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CHAPTER 18 -- MAGNETIC    FIELDS

18.1)  A currentless wire is electrically neutral (i.e., its positive and
negative charge densities are equal).  Yet when electrons flow and length
contraction happens, we still assume that the wire is electrically neutral in the
lab frame.  How can both be the case?

When current flows, a battery must be providing charge to the wire at a
certain rate.  What really happens is that the rate of flow of electrons onto the
wire from the battery couples with the electron's length contraction to keep the
electron density constant and equal to the proton density.

18.2)  To determine the direction of a mag-
netic field produced by a current-carrying wire
at some point, think of a circle centered on the
wire that passes through the point of interest.
The field will be tangent to the circle oriented
clockwise or counterclockwise as defined by the
right-thumb rule (the right thumb rule: point
the right thumb in direction of current--your
fingers will curl in direction of B).

With all that in mind, Figure 1a shows the
circulation of the magnetic field set up by the
current in wire 1, as identified in the sketch.
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Notice that the direction of the B-field at Points E is upward and to the right.
Figure 1b shows the circulation of the

magnetic field set up by the current in wire 2.
Notice that the direction of the B-field at Points E is
downward and to the right.

How does wire 1's field at Point E
superimpose (i.e., add vectorially) with wire 2's
field at that point?  The y components add to zero
leaving only a net x component to the right.  So
what is the trend for all of the wires?  The net field
will be to the right.

In short, to determine the net magnetic field
direction for a group of wires, use the right-thumb
rule on selected wires in the configuration to get a sense of the general trends,
then pray for symmetry.  With luck, components will cancel and you will be
left with a clear-cut direction.

a.)  At Point A: According to the right-thumb rule, the wires in the
upper row and to the left of Point A will generate B-fields that will have
components in the +x and +y directions (see Figure 1a).  The upper-row
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wires to the right of Point A will generate B-field components in the +x
and -y directions.  Due to symmetry, the y components will add to zero
and the net effect from the upper row will be a B-field in the +x direction.

The wires in the lower row and to the left of Point A will generate B-
fields that will have components along the +x and -y directions.  The
lower row wires to the right of Point A will generate B-field components
in the +x and +y directions (see Figure 1b).  Again, due to symmetry, the
y components will add to zero and the net effect from the lower row will
be a B-field in the +x direction.

Bottom line:  The net B-field will be in the +x direction.

b.)  At Point E:  The B-field generated by the upper row of wires will
have components along the +x and +y axes.  The B-field generated by the
lower row of wires will have components along the x and -y directions.

Due to symmetry, the y components will add to zero leaving a net B-
field in the +x direction.

c.)  At Point C:  The upper row of wires will all have B-field compo-
nents in the -x direction with the left half having +y components while
the right half has -y components (the y components add to zero).  A simi-
lar y component situation exists with the lower row with the x compo-
nent of their B-field in the +x direction.  As the upper row is closer to
Point C, the net field will be in the -x direction.

d.)  At Point D:  This is similar to Point C except Point D is far away.
As you get further and further away, the magnitude of the opposing
fields gets closer and closer while additionally getting smaller and
smaller.  For all intents and purposes, the components of the net B-field
far away will add to zero.

e.)  A charge placed at Point E will feel NO FORCE.  Why?  Because
static magnetic fields can only change the direction of a charge's mo-
tion.  They are NOT able to accelerate a charge in the sense of changing
the magnitude of the charge's velocity.

18.3)  The cross product in F = qvxB allows us to determine the
DIRECTION of the force on a positive charge moving in a B-field.  Using the
right hand rule (v x B) on a charge moving in the figure, we will see positive
charge bend in the direction of that force while negative charge bends opposite
that direction.  Noting that non-charged particles do not deviate in the B-field
at all, we can write:

a.)  --Charges A and G must be positive;
  --Charges D and E must be negative;
  --Charges C and F must be neutral.
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b.)  Assuming v and  B are perpendicular to one another (i.e., the
sine of the angle between the two vectors is one), the magnitude of the
magnetic force will be F = qvB.  Noting that all magnetic forces are
centripetal in nature, we can use N.S.L. to write:

      ΣFcent:
              qvB = mac

                  = m(v2/R)

or
   v = qBR/m.

In other words, for a fixed q, B, and m, the velocity is proportional to the
radius of the motion.  The largest radius in the picture appears to be that
associated with charge G (charge D is a close second), therefore charge
G is moving the fastest.

c.)  Re-manipulating the previous N.S.L. equation above, we get:

    q = mv/BR.

For a given m, v, and B, the charge is indirectly proportional to the
radius of motion.  In other words, holding all else constant, a large
charge will have a small radius (this makes sense--the bigger the
charge, the bigger the magnetic force on the particle and, hence, the
tighter the circle).  As such, the greatest charge should be charge A.

18.4)  This requires the use of F = qvxB.  Expanding to determine the
magnitude of the force, we get:

F = q v B sin θ
      (1.7x10-8 nt) = (5x10-10 C)(3x102 m/s)(.138 T) sin θ

⇒     θ = 55.2o.

18.5)  We will begin with the centripetal aspect of magnetic fields:

a.)  Using the magnetic force equation:

     ΣFcent:

       q v B sin θ = m ac
                   = m(v2/R).
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Manipulating yields:

B = mv/[qR sin θ].

Assuming the angle is at 90o (to optimize the field's strength), we
get:

        B = mv/[qR]
= (6.67x10-27 kg)[.95(3x108 m/s)]/[(1.6x10-19 C)(100 m)]
= .119 Teslas.

Note:  The earth's magnetic field strength is 6x10-5 teslas.  That means
the accelerator will be using a B-field that is approximately 2000 times as large
as the earth's field.  (This is important as the earth's field cannot be screened
out and, hence, cannot be ignored when the required field is small).

b.)  The magnetic field relationship derived above still holds.  That is:

        B = mv/(qR).

In that expression, the mass m, the charge q, and the track radius R are
all constant.  If we can derive an expression for the appropriate velocity
as a function of time, we will have the magnetic field as a function of
time.

i.)  To begin, consider the forces acting on the charge as it picks
up speed around the track.  Specifically, consider what happens
when the charge accelerates between two plates.  We know the elec-
tric force produced by the electric field acting on the charge is the ac-
celerating factor in the problem.  That means N.S.L. yields:

     Felect = m(dv/dt),

where the acceleration variable has been written in terms of the
velocity's time-derivative.

ii.)  As has been mentioned, this force is produced by the electric
field between the plates.  The relationship between an electric force
and its associated electric field is:

          Felect = qE,

where q is the charge being accelerated and E is the electric field
between the plates.
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iii.)  The electric field is present due to the electrical potential
difference between the plates.  The relationship between an electric
field and its associated electrical potential field is:

          ∆V = -E.d,

where the magnitude of  d equals the distance L between the plates
in this case.  As the positive charges accelerate from higher to lower
electrical potential (i.e., from Vplate to zero), we can rewrite this as:

           (0 - Vplate) = -EL cos 0o,
or

        E = Vplate/L.

iv.)  With this, we can rewrite N.S.L. as:
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v.)  Knowing v(t), we can write B(t).  Doing so yields:
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c.)  At .95c, the particle's mass is:
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FIGURE 2
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mrel =            mrest        /[1 -                       [v/c]2                                    ]1/2

mrel = (6.67x10-27 kg)/[1 - [(.95)(3x108 m/s)/(3x108 m/s)]2]1/2

         = 2.14x10-26 kgs.

With this, Part a becomes:

B = mrelv/(qR),

    = (2.14x10-26 kg)[.95(3x108 m/s)]/[(1.6x10-19 C)(100 m)]
    = .381 Teslas.

Conclusion:  The B-field has to be over three times as large to
accommodate for relativistic effects.  That would produce a whopping
big error if not taken into account!

18.6)

a.)  The fact that the
charge is positive coupled
with the cross product F =
qvxB allows us to draw the
path of the particle as it
moves through the B-field
(see Figure 2 to the right).

b.)  This is a conserva-
tion of energy problem
(you have a charge
"falling" through a poten-
tial difference).  As such:

ΣKE1 +  ΣU1  + ΣW =    ΣKE2    + ΣU2
    0     +  qVo   +    0   = (1/2)mv2 +    0

   ⇒          ⇒     v = [2        q              Vo        /       m        ]1/2

      = [2(4x10-9 C)(2000 V)/(5x10-16 kg)]1/2

      = 1.79x105 m/s.

c.)  The centripetal aspect of the magnetic force (assuming the angle
between B and v is a right angle) yields:



Solutions--Ch. 18  (Magnetic Fields)

503

FIGURE 3

v = (4 m/s) j

E= (25 nt/C) i

ΣFcent:

     q v B sin θ = m ac
         = m(v2/R)

 ⇒    R = mv/qB
= (5x10-16 kg)(1.79x105 m/s)/(4x10-9 C)(1.8 T)
= .0124 meters.

18.7)  This is a problem in which
there exists both an unknown magnetic
field and a known electric field coexisting
in the same space (a sketch of the known
information is shown in Figure 3).  As
such, we need to use Lorentz's equation
(Lorentz's equation incorporates all
possible electric-borne forces into one
expression), or:

         Fnet from all electrical effects = qE + q(vxB).

We will approach this problem in parts, then put everything together at the
end.

a.)  For the electric field:  The electric field vector is 25i nts/C.  To de-
termine the force acting on a positive charge, all we have to do is to mul-
tiply the electric field vector E by the charge q and we have the electric
force qE, direction and all.  A negative charge of magnitude q will feel
the same size force in the electric field, but the force will be opposite in
direction.  The easiest way to accommodate this situation is to simply
include the sign of the charge in the qE expression (using the sign of a
charge as though it has something to do with the direction of a vector is
not strictly kosher, but it works, so we'll do it).  Doing so yields:

     FE.fld = qE
    = (-2 C)(25i nt/C)
    = 50(-i) nts.

b.)  For the magnetic field:  The B-field must have a magnitude and
direction such that when it is operated on in the appropriate way (i.e.,
when we calculate qvxB), the force exerted on the negative charge ex-
actly cancels the force exerted by the electric field (remember, the net ac-
celeration of the particle is zero).  As FE has a direction of -i (see the cal-
culation in Part a), FB must have a direction of +i.  Including the sign of
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the charge in the cross product calculation (the expression qvxB was de-
fined for the force on a positive charge--as we must reverse the calcu-
lated direction when dealing with a negative charge, we might as well
effect that sign reversal by including q's negative sign), we can write:

     FB = qvxB

            = (-2 C)[4 j m/s]x[B (unit vector) Teslas].

From observation, the magnitude of the force cross product is 8B.
From previous arguments, the direction of the cross product must be in
the direction of the magnetic force (i.e., in the +i direction).  As such:

     FB = (8B) (+i).

So the question comes down to this: The magnetic field's direction
must be such that when j is crossed into it, then multiplied by -1, the
cross product yields a vector in the +i direction.  What direction is this?

At the very least, a vector in the -k direction will do the job.  For that
case, the B-field can be written as B = B(-k).

Note:  I say, "At the very least" because an additionally magnetic field
component in the direction of motion will not produce a force on the charge (j x
j = 0).  As that component will not alter anything, the most general way to
write out our magnetic field vector would be B = Byj - Bzk.

c.)  Putting it all together we get:

   Fnet =      q         E          +     q    [     v      x    B    ]

= (-2 C)(25i nt/C) +  (-2 C)[4(j) m/s]x[B(-k) T]
=        50(-i) nts      +         (8B) (+i).

Noting that the acceleration is zero, we can finally write:

-50i + 8Bi = 0
     ⇒     B = 6.25 T.

As a vector, the magnetic field in this problem can be written as:

B = 6.25(-k) teslas.

18.8)

a.)  The equation governing the magnitude of B-field generated by a
wire is:
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FIGURE 4
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   B = µoI/(2πr),

where µo = 4πx10-7 volt.second/amp (these units are also henrys/meter

or tesla.meters/amp), I is the current through the wire, and r the
distance from the wire.  We want the distance r at which the magnitude
of Bwire is 6x10-5 teslas.  Manipulating the above equation we get:
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b.)  If the wire runs North-South (or vice versa), it will produce no B-
field IN the N-S direction (remember, B-fields CIRCLE around wires)
and, hence, will not add to or subtract from the earth's field.  That
means the wire must run East-West.  If the current runs West
(assuming no dip to the earth's field, and remembering the earth's field
lines go from the South geographic pole to the North geographic pole),
the fields will cancel 2.67 centimeters below the wire.  If the current
runs East, the fields will cancel 2.67 centimeters above the wire.

18.9)  Using the modified right-hand
rule, the magnetic field about wires A and D
will be counterclockwise and the field around
wire C will be clockwise.

a.)  The distance between Point P
and each wire is the diagonal distance
across the square divided by 2.  That is,
rp = (.252 + .252)1/2/2 = .177 meters.
With the B-field directions shown in
Figure 4, the components add vectori-
ally yielding:

B = BA [(cos 45o)i + (sin 45o)j] +

BD [(cos 45o)i - (sin 45o)j] +

      BC [(cos 45o)i + (sin 45o)j].

As all three magnetic field magnitudes are the same (same current,
same distance), we can simplify the above equation to:
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           B = B [(3 cos 45o)i + (1 sin 45o)j]
= [µoI/(2πr)] [2.12 i + .707j]

        = [(4πx10-7 T.m/A)(15 A)/[2π(.177 m)]] [2.12 i + .707j]
 = 3.6x10-5 i + 1.2x10-5 j.

b.)  The magnetic force as a vector is equal to qvxB, or:

F =           q                   v           x                     B
    = (-7x10-12 C)[3200 k m/s] x [3.6x10-5 i + 1.2x10-5 j]
    = [-2.24x10-8 k m/s] x [3.6x10-5 i + 1.2x10-5 j].

Crossing k into (i + j) yields a vector whose direction is (j - i).  Noting that
q is negative, the cross product yields:

F = (- 8.1x10-13 j + 2.69x10-13 i ) nts.

c.)  Along a line between wire A and wire C, the velocity vector will
be 3200∠-45o.  The unit vector equivalent is v = 2262 i - 2262j m/s.  Doing
the cross product in unit vector notation (remember the matrix
approach) and keeping in mind that we are dealing with a negative
charge, we end up with:

F = (-7.6x10-13 k) nts.

d.)  Along a line between wire C and wire A (this direction is the
same as a line from P to A), the velocity vector will be 3200∠135o.  The
unit vector equivalent is v = -2262 i + 2262j m/s.  The cross product in that
case yields:

F = (7.6x10-13 k) nts.

e.)  The B-field provided by wire A at wire D is +[µoI/(2πr)]j while the

B-field provided by wire C at wire D is +[µoI/(2πr)]i.  Putting in the
numbers yields:

Bnet at D = [µoI/(2πr)] (i + j)

   = [(4πx10-7 T.m/A)(15 A)/[2π(.25 m)]] (i + j).
   = 1.2x10-5 (i + j).

The magnetic force on a current-carrying wire is:
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    F = iLxB,

where i is the current in the wire, L is a vector whose magnitude is the
length of the wire and whose direction is the direction of current flow,
and B is B.  The force will therefore be:

F = (15 A)(L k)x(1.2x10-5 i + 1.2x10-5 j).

The cross product yields:

       F = 1.8x10-4 L j - 1.8x10-4 L i.

The force per unit length will, therefore, be:

       F/L = 1.8x10-4 j - 1.8x10-4 i.

18.10)  The sketch in Figure 5 shows the
device assuming NEGATIVE CHARGE
flows in the circuit (this was Step 1).  Note
the preponderance of negative charge on the
bottom side of the plate making the top side
the high voltage side.

Figure 6 shows the device assuming
POSITIVE CHARGE moves in the circuit
(this was Step 2).  Note the preponderance of
positive charge on the bottom side of the plate
making the bottom side the high voltage
side.

A voltmeter has both a high voltage
and a low voltage terminal.  If you attach the
high voltage terminal to, say, the bottom of
the plate, the meter's needle will swing
appropriately if the charge flow is that of
positive charge.  If, in fact, you were to try
this, you would find that the needle would
swing in the wrong direction.  What does that mean?  It means that the high
voltage side of the plate must not be the bottom side, which means that the
current flow in the circuit is not made up of positive charges.

18.11)  Remembering that full deflection of the galvanometer needle will
occur when 5x10-4 amps flow through the galvanometer, and assuming that
the galvanometer's resistance is 12 ohms, consider:
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a.)  A voltmeter is designed to measure the voltage difference be-
tween two points, usually on either side of a circuit element.  If we want
a 300 volt (max) voltmeter, we need a
meter-circuit such that when 300
volts is placed across it, 5x10-4 amps
flow through the internal galvan-
ometer causing the galvanometer to
register full deflection.

The kind of circuit that will do
the trick is shown in Figure 7.
Noting that the current is the same
for the extra resistor as it is for the
galvanometer (the two are in
series), we can sum the voltage
drops across the individual ele-
ments and write:

    Vmax    =         Vgalv,max        +           VR
(300 volts) =  (igalv,max)(Rgalv) + (igalv,max)(R)

(300 volts) =   (5x10-4 A) (12 Ω)   + (5x10-4 A)   R
         ⇒     R = 6x105 Ω  . . . (large as expected)

b.)  An ammeter is designed to
measure the current that passes
through it.  That means that if we
want a .25 amp (max) ammeter,
we need a circuit such that when
.25 amps pass through it, a cur-
rent of  5x10-4 amps flow through
the internal galvanometer.  That
also means that the rest of the
current has to be shunted off
elsewhere.  That elsewhere is a
parallel resistor called a shunt
resistor Rshunt.  Figure 8 shows the circuit.  The math follows:

As the voltage across a parallel combination is the same for each
branch, we can write the following for our .25 amp ammeter:

            VR = Vshunt
igalv,maxRg = (.25 - ig,max)Rs

              (5x10-4 A)(12 Ω) = (.2495 A)Rs
                         ⇒        Rs = .024 Ω  . . . (small as expected)
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FIGURE 9
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18.12)  The idea behind Ampere's Law is to get a feel
for the direction of the B-field in the region of interest,
then find a path over which the magnitude of B is con-
stant.  In this case, B circles the long wire.  That means
that the Amperian path should be a circle.

a.)  To determine the magnitude of B for r < r1:
Figure 9 shows the inner wire and an Amperian
path of radius a.  Using that sketch, we can write:
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If the expression for B is positive, it must circulate as shown in Figure 9
(actually, it's direction depends upon where you are, relative to the wire,
but the circulation is as shown).

b.)  To determine the magnitude of B
for r1 < r < r2:  The sketch to the right
shows the inner wire, the cylinder and
an Amperian path of radius a for the
region between r1 and r2.

Before we can use Ampere's Law, we
need to determine the amount of current
passing through the Amperian path due
to the current flow in the pipe.  Given that
the current varies as one moves radially
out from the wire, we must first
determine the current through an
arbitrary differential area dA (see
Figure 11), then integrate.  Note
that if the radius of the differential
area is c, the thickness of the
differential strip is dc and the
differential area is dA = (2πc)dc.
As the current density in that
differential region is evaluated as
j = (kc)io (this function was given
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in the problem), multiplying the current density by the differential area
yields the differential current flowing through the area.  Integrating
that quantity between r = r1 and r = a gives us the total current through
the pipe enclosed by the Amperian path.  As the pipe's current and the
wire's current are in opposite directions, Ampere's Law becomes:
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If, after the expression is evaluated, B is found to be positive, it's direction
will circulate in a manner similar to that shown in Figure 9.  This will
correspond to a net resultant current into the page as was the case in that
figure.  If the sign of B is negative, the circulation will be the other way.

c.)  For B outside the complex:  The only difference between this part
and the situation in Part b is the limits of integration.  That is, we now
need all the current in the tube (i.e., from r = r1 to r = r2).  With an
Amperian path of radius a > r2, the final expression becomes:
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d.)  For j = (rk)io to have the units amps per meter squared, the

constant k must have the units meters-3.

18.13)  Following the hint provided in the
problem:  Define a differentially wide section of
the plate an ARBITRARY distance x units
from the origin and call that width dx (see
Figure 12).

Note:  A common error is to define x to be
at a special point like an endpoint.  As an
example, you might be tempted to make your
sketch look like Figure 13 with x = w/2 and r =
[(w/2)2 + y2].  This would be a major mistake!!!

 With our system variables as defined in
Figure 12, treat the current through the dif-
ferential section (call this di) as though it
were current in a single wire.  Doing so,
determine the magnetic field vector dB due to
that current as it manifests itself at Point P.

As a preliminary, determine di:  To do
this, define a current density function j for the
plate, then multiply the current density by the
differential area dA = hdx.

For the current density function j, we can use macroscopic variables such
that:

         j = current/area
   = io/[hw]

and microscopic variables:

         j = current/area
   = di/[(h)dx].

Equating the two yields:

        di = (io/w)dx.

With the differential current, we can proceed.
To determine the direction of the magnetic field due
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FIGURE 15
di

dB

dB'

di'

to di as evaluated at Point P, draw a circle that passes through Point P and that
is centered on the section of wire at x.  Using the right-thumb rule, the sense of
the B-field is as shown in Figure 14 on the previous page.  Note also that that
field has been defined as dB.  It is put in differential form because the field
generated by di is only a small part of the overall
field found at Point P.

If we consider the magnetic field produced by
a bit of current at -x (see Figure 15), it should be
evident that the y components of the two fields will
add to zero.  As such, the symmetry of the
situation allows us to concentrate on the x
component only.

The x component of the magnetic field will,
according to the sketch in Figure 14 on the
previous page, be dBx = dB sinθ.  From the

geometry presented in that sketch, sin θ = y/r (you should convince yourself
that the two angles defined as θ in Figure 14 are, indeed, the same).

The magnitude of the differential field dB at Point P will be:

  
dB = µo (di)

2πr
,

where all the variables have been previously defined (if you hadn't known the
expression for the B-field due to a long wire, you would have had to have
derived it using Ampere's Law).  The x component of that field will be:

       
  
dBx = µo (di)

2πr
sin θ .

Putting in all the variables (i.e., di, r, etc.), we get:
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FIGURE 16

i

r

    wire
to infinity

x
dl = dx

y
0

    wire
to infinity

The total magnetic field at Point P will be the sum all the differential fields.
Using integration (note the limits change halfway down), this is:
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Integrals of the form 

  

1
ax2 + bx + c





∫ dx = 2

4ac − b2( )1/2 tan−1 2ax + b

4ac − b2( )1/2












  as

long as 4ac > b2.  For our integral, a = 1, b = 0, and c = y2.
Although it is not particularly important, the evaluation of this integral for

our situation yields a magnetic field vector (unit vector and all) of:

    
    
B i= 





−µ
π

oi
w

w
y

0 1

2
tan   i(-  ) .

18.14)  Defined in Figure 16 is a
sketch of our system with a differential
length of current-carrying wire dl = dx
(dl is the variable traditionally used in
Biot Savart, whereas dx is the appro-
priate variable for our particular ge-
ometry), a vector r = (x2 + y2)1/2 from dx
to the point in question at (0, y), and the
angle θ between dx and r.

Noting that the sin θ = y/r, we can write Biot Savart as:
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This is the differential magnetic field at the coordinates (0, y) due to the
current flowing in the differential section of wire dl = dx located at -x.  To get
the total magnetic field at (0, y), we must either sum up all the differential
magnetic field quantities due to all the wire sections from -∞ to +∞, or do a
similar integration between 0 and +∞ and double the solution.  We will do the
latter:
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On the surface, this doesn't look good.  Upon closer inspection, things work
out nicely.  How so?  Because for very, very large x:

  

x

x2 + y2( )1/2 = x

x2( )1/2 = 1.

As infinity is as large an x as is possible, we can simplify our expression
to:

     

    

B
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2

1 0
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This is the same expression we derived with considerably less difficulty
using Ampere's Law.


